Structural biology of autophagy

Cells continuously synthesize proteins, reconstruct their organelles and cellular components, renew them and take up substances from outside. A cellular mechanism that counteracts and controls this on-going growth of organic matter is autophagy. This particular mechanism degrades everything that is no longer needed – and this includes pathogens as well. In this regard autophagy plays a central role in our immune response and the defence against infectious diseases. Here you can find out how our scientists are researching autophagy in order to fight against pathogens and infectious diseases.


  • Bleckmann,M.; Schmelz,S.; Schinkowski,C.; Scrima,A.; van den,Heuvel J.; (2016). Fast plasmid based protein expression analysis in insect cells using an automated SplitGFP screen. DOI: 10.1002/bit.25956 HZI repository PubMed
  • Haufschildt,K.; Schmelz,Stefan; Kriegler,T.M.; Neumann,A.; Streif,J.; Arai,H.; Heinz,Dirk W.; Layer,G.; (2014). The Crystal Structure of Siroheme Decarboxylase in Complex with Iron-Uroporphyrin III Reveals Two Essential Histidine Residues. Journal of Molecular Biology: PubMed
  • Hofmeyer,T.; Schmelz,S.; Degiacomi,M.T.; Dal Peraro,M.; Daneschdar,M.; Scrima,Andrea; van den Heuvel,Joop; Heinz,Dirk W.; Kolmar,H.; (2013). Arranged sevenfold: Structural insights into the C-terminal oligomerization domain of human C4b-binding protein. Journal of Molecular Biology: 425 8, 1302-131700222836 DOI: 10.1016/j.jmb.2012.12.017 HZI repository PubMed
  • Shi,T.; Bunker,R.D.; Mattarocci,S.; Ribeyre,C.; Faty,M.; Gut,H.; Scrima,Andrea; Rass,U.; Rubin,S.M.; Shore,D.; Thomä,N.H.; (2013). Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. Cell: 153 6, 1340-135300928674 WEBURLS
  • Scrima A, Fischer ES, Lingaraju GM, Böhm K, Cavadini S, Thomä NH.; (2011). FEBS Lett. Detecting UV-lesions in the genome: The modular CRL4 ubiquitin ligase does it best!. PubMed
  • Fischer,E.S.; Scrima,Andrea*; Bohm,K.; Matsumoto,S.; Lingaraju,G.M.; Faty,M.; Yasuda,T.; Cavadini,S.; Wakasugi,M.; Hanaoka,F.; Iwai,S.; Gut,H.; Sugasawa,K.; Thoma,N.H.; (2011). The Molecular Basis of CRL4(DDB2/CSA) Ubiquitin Ligase Architecture, Targeting, and Activation. Cell: 147 5, 1024-1039 PubMed
  • Meyer S, Scrima A, Versées W, Wittinghofer A.; (2008). Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.. J Mol Biol: 380(3), 532-547 PubMed
  • Scrima A, Thomas C, Deaconescu D, Wittinghofer A.; (2008). The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues.. EMBO J.: 27(7), 1145-1153 PubMed
  • Thomas C, Fricke I, Scrima A, Berken A, Wittinghofer A; (2007). Structural Evidence for a Common Intermediate in Small G Protein-GEF Reactions.. Mol Cell: 25(1), 141-149 PubMed
  • Scrima A, Wittinghofer A; (2006). Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. EMBO J.: 25(12), 2940-2951 PubMed
  • Gasper R, Scrima A, Wittinghofer A; (2006). Structural insights into HypB, a GTP-binding protein that regulates metal binding.. J Biol Chem: 281(37), 27492-27502 PubMed
  • Lammers M, Rose R, Scrima A, Wittinghofer A; (2005). The regulation of mDia1 by autoinhibition and its release by Rho*GTP. EMBO J: 24(23), 4176-4187 PubMed
  • Scrima A, Vetter IR, Armengod ME, Wittinghofer A; (2005). The structure of the TrmE GTPbindingprotein and its implications for tRNA modification. EMBO J: 24(1), 23-33 PubMed