Drug Design and Optimization

This group is located at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)


In order to combat the increasing number of resistant pathogens, the development of new anti-infective drugs is an important goal for pharmaceutical research. Efficient medications with novel modes-of-action to fight infectious diseases are urgently needed. Below, you may read more about the design, identification and optimisation of new drug candidates. This group is located at the Helmholtz Institute for Pharmaceutical research Saarland (HIPS). 

Leader

Our Research

The emergence of drug-resistant strains of human pathogens such as P. aeruginosa, S. aureus or S. pneumoniae is a recognised threat to human health and urgently calls for the development of new antibacterial agents with novel modes of action. The department DDOP adopts a target-based strategy focussing on a portfolio of two types of drug targets.

The first group comprises targets which impair vital mechanisms within the bacteria and effectively kill them. One example is the enzyme DXS which plays a crucial role in the methylerythritol phosphate pathway, which is essential for the biosynthesis of universal isoprenoid precursors in many Gram-negative pathogens, but absent from humans. The second group comprises targets interfering with pathogenicity and virulence without affecting bacterial viability. These pathoblockers are believed to cause a lower rate of resistance development, whilst leaving the commensal microbiota untouched.

The Hirsch group applies a series of established hit-identification strategies, including structure- and fragment-based drug design, classical medicinal chemistry and virtual screening. In addition, pioneering of innovative protein-templated methods such as dynamic combinatorial chemistry and kinetic target-guided synthesis in terms of the scope of chemical reactions, biological targets and synergistic combinations addresses key bottlenecks. Use of established and innovative techniques to design, synthesize and profile the most promising inhibitors enables efficient subsequent multiparameter optimisation as well as elucidation of the mode of action.

Scientists in the interdisciplinary team have diverse backgrounds such as medicinal chemistry, synthetic organic chemistry, pharmacy, pharmacology, biology or biochemistry, resulting in a diverse skill set.

Senior Professor

Project Leader

Bachelor & Master
Are you interested in a bachelor or master thesis? We are looking forward to your request!

Video

  • HIPS Infofilm (English)

    Resistance to antibiotics has become one of the major global challenges regarding infectious diseases. This is specifically the issue that is being tackled by the new Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS).

Audio Podcast

  • Kündigung für Biofilm-WGs – Pharmazeuten des HIPS stören BakteriengemeinschaftenBakterien haben einen ausgeprägten Gemeinschaftssinn und verschanzen sich gerne in schleimigen Biofilmen. Etwa 60 Prozent aller bakteriellen Infektionen lösen inzwischen Biofilme aus. Ein besonders geselliger Keim ist Pseudomonas aeruginosa. Er ist besonders für Mukoviszidose-Patienten gefährlich. Wissenschaftler am Helmholtz-Institut für Pharmazeutische Forschung Saarland suchen nach Wegen, seine Biofilme aufzulösen – damit Medikamente wirken können. Begleiten Sie Anke Steinbach in Ihre Labore...
PrintSend per emailShare