Master detox molecule boosts immune defence

Scientists from Braunschweig and Luxembourg discover an unknown immune mechanism

Together with scientists of the Luxembourg Institute of Health (LIH) the research team of Prof Karsten Hiller from the Braunschweig Integrated Centre of Systems Biology (BRICS) has discovered a so far unknown molecular mechanism by which the human immune system activates its immune cells: T cells, a particular type of white blood cells, effectively ward off pathogens if a gene known as Gclc is expressed within them. The Gclc gene encodes a protein instrumental for the production of a substance called glutathione – a molecule that was previously known only to eliminate harmful waste products of metabolism such as reactive oxygen species and free radicals.

Immunologische Abwehr: Eine T-Zelle (rot) wird für den Kampf gegen Krankheitserreger von einer dendritischen Zelle fit gemacht. © HZI/Manfred RohdeImmunologische Abwehr: Eine T-Zelle (rot) wird für den Kampf gegen Krankheitserreger von einer dendritischen Zelle fit gemacht. © HZI/Manfred RohdeThe research teams of Prof Dirk Brenner, LIH, and Karsten Hiller have discovered that glutathione also stimulates T cells’ energy metabolism. This way, when in contact with pathogens, T-cells can grow, divide and fight off intruders such as viruses. Glutathione is thus an important molecular switch for the immune system. This discovery offers starting points and perspectives to develop new therapeutic strategies for targeting cancer and autoimmune diseases. The scientists published their findings in the prestigious journal Immunity. BRICS is a joint research centre of the Technische Universität Braunschweig and the Helmholtz Centre for Infection Research (HZI).

“Our body has to keep our immune system in a carefully balanced equilibrium”, says Prof Dirk Brenner from the Luxembourg Institute of Health (LIH). “If the body’s innate defences are overactive, then they turn against the body. This is what happens in autoimmune diseases like multiple sclerosis or arthritis, for example. However if the defences are too weak, then infections cannot be handled or body cells can proliferate uncontrolled and grow to form tumours, which can become life threatening.” Immune cells such as T cells therefore normally reside in a state of alert hibernation, with their energy consumption reduced to a minimum. If pathogens or parts thereof dock onto their outer envelope, then the T cells wake up and boost their metabolism. This necessarily creates greater amounts of metabolic waste products, such as reactive oxygen species (ROS) and free radicals, which can be toxic for the cells.

When the concentration of these oxidants increases, the T cells have to produce more antioxidants so as not to be poisoned. No previous research group had studied the mechanism of action of antioxidants in T cells to great detail before. In exploring this phenomenon, the research teams from the LIH and the Braunschweig Integrated Centre of Systems Biology (BRICS) discovered that the antioxidant glutathione produced by T cells serves not only as a garbage collector to dispose of ROS and free radicals, it is also a key switch for energy metabolism that controls the immune response, and is thus of high relevance to various diseases. “These fascinating results form a basis for a targeted intervening in the metabolism of immune cells and for developing a new generation of immunotherapies,” explains Karsten Hiller, who holds a professorship for bioinformatics and biochemistry at the Technische Universität Braunschweig and the Helmholtz Centre for Infection Research (HZI).

Comic_Master detox molecule boosts immune defenceFor their investigations, the scientists employed genetically modified mice in whose T cells the Gclc gene was removed and therefore these cells could not produce glutathione. “In these mice, we discovered that the control of viruses is impaired – mice that lack the Gclc gene have an immunodeficiency. But by the same token, this also meant the mice could not develop any autoimmune disease such as multiple sclerosis,” says Brenner. Further tests demonstrated the reason for this: “The mice cannot produce any glutathione in their T-cells,” Brenner continues, “and so a number of other signalling events that directly boost metabolism and increase energy consumption are lacking.” As a result, without glutathione, T-cells do not become fully functional; they remain in their state of hibernation and no self-destructive autoimmune response occurs. Karsten Hiller from the Braunschweig University of Technology who collaborated with the Luxembourgish scientists adds: “It is intriguing to see that cellular metabolism and immune activation are so tightly entangled and that a fine-grained interplay is essential to achieve a correct function."

The scientists see their T cell experiments as a prelude to more in-depth investigation of the energy balance of immune cells in general. A number of different autoimmune diseases, for example, are related to malfunctions in various subgroups of T cells. “If we understand the differences in the molecular mechanisms by which they stimulate their metabolism during defensive or autoimmune responses, then we can discover clues as to possible attack points for therapeutic agents regulating the immune response,” says Brenner. In follow-up projects, the researchers are planning to gain new indications for potential sites of therapeutic interventions.

Original publication:

T. W. Mak, M. Grusdat, G. S. Duncan, C. Dostert, Y. Nonnenmacher, M. Cox, C. Binsfeld, Z. Hao, A. Brüstle, M. Itsumi, C. Jäger, Y. Chen, O. Pinkenburg, B. Camara, M. Ollert, C. Bindslev-Jensen, V. Vasiliou, C. Gorrini, P. A. Lang, M. Lohoff, I. S. Harris, K. Hiller, and D. Brenner: Glutathione Primes T Cell Metabolism for Inflammation. Immunity (2017), http://www.cell.com/immunity/fulltext/S1074-7613%2817%2930129-2

Contact for media

Documents (Download)

PrintSend per emailShare