ERROR: Content Element type "title_on_image" has no rendering definition!

FOR 629

Molekulare Mechanismen zellulärer Motilität

Das exakt geregelte Zusammenwirken von Motorproteinen, Biopolymeren und assoziierten Proteinen ermöglicht den intrazellulären Transport von Vesikeln und Organellen, Veränderungen der Zellform, die Zellmigration, die Bildung von Zelladhäsionskomplexen und weitere Aktivitäten der Zellmotilität. Die dabei entstehenden Multiproteinkomplexe sind hoch dynamisch und weisen eine außerordentliche strukturelle und molekulare Vielfalt auf. Innerhalb der letzen Jahre wurden erhebliche Fortschritte bei der Identifizierung und Charakterisierung einer Vielzahl mit dem Zytoskelett assoziierter Proteine erzielt. Um weitere Prinzipien zu entschlüsseln, die motilen Prozessen zugrunde liegen, wird es auch weiterhin notwendig sein, einzelne Proteine oder aus wenigen Proteinen rekonstituierte Modellsysteme mithilfe von biochemischen und strukturbiologischen Methoden im Detail zu untersuchen. Allerdings erfordert ein vollständiges Verständnis der komplexen Wechselwirkungen und Mechanismen, die für die Zellbewegung verantwortlich sind, zusätzlich die Einbeziehung zellbiologischer und molekulargenetischer Ansätze. Die Zusammensetzung der Forschergruppe ermöglicht ein Methodenrepertoire, das Kraftmessungen an einzelnen Motormolekülen, transiente Ensemblekinetiken, Röntgenstrukturanalysen, moderne mikroskopische Untersuchungen und molekulargenetische Ansätze einschließt. Als einfacher Modellorganismus wird Dictyostelium benutzt. Dazu ergänzend werden Untersuchungen an Zelllinien humanen und tierischen Ursprungs und genetische Experimente an der Maus durchgeführt. Untersuchungen an aktin- oder mikrotubuliabhängigen Motoren sind das primäre Ziel von vier Teilprojekten. Bei zwei Teilprojekten stehen Untersuchungen aktinbindender Proteine im Vordergrund. Dabei handelt es sich um den Mechanismus der WAVE-induzierten Aktivierung des Arp2/3-Komplexes und Untersuchungen zur Rolle der Formine. Letztere spielen eine wichtige Rolle bei der Ausbildung der Zellpolarität, der Zytokinese, der Bildung von Filopodien und der Zell-Zell-Adhäsion. Ein weiteres Teilprojekt befasst sich mit der Bedeutung der posttranslationalen Modifikation des alpha-Tubulins durch die Tubulin-Tyrosin-Ligase für die Ausbildung der Zellpolarität und den Einfluss auf aktinabhängige Bewegungsprozesse. Die molekularen Mechanismen des axonalen Transports in Neuronen stehen im Zentrum eines Teilprojekts, das sich mit der Wechselwirkung zwischen Mikrotubuli, Mikrotubuli-assoziierten Proteinen und Kinesin-Motoren beschäftigt.

Partner

Medizinische Hochschule Hannover

Projektleiter

Beteiligte Gruppen

Koordinator

Professor Dr. Dietmar J. Manstein (MHH)

Homepage

www.mh-hannover.de/FOR 629

Geldgeber / Förderer

DFG - Deutsche Forschungsgemeinschaft